Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions
نویسندگان
چکیده
This paper presents fast algorithms for calculating mean-variance efficient frontiers when the investor can sell securities short as well as buy long, and when a factor and/or scenario model of covariance is assumed. Currently, fast algorithms for factor, scenario, or mixed (factor and scenario) models exist, but (except for a special case of the results reported here) apply only to portfolios of long positions. Factor and scenario models are used widely in applied portfolio analysis, and short sales have been used increasingly as part of large institutional portfolios. Generally, the critical line algorithm (CLA) traces out mean-variance efficient sets when the investor’s choice is subject to any system of linear equality or inequality constraints. Versions of CLA that take advantage of factor and/or scenario models of covariance gain speed by greatly simplifying the equations for segments of the efficient set. These same algorithms can be used, unchanged, for the long-short portfolio selection problem provided a certain condition on the constraint set holds. This condition usually holds in practice.
منابع مشابه
Robustness in portfolio optimization based on minimax regret approach
Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...
متن کاملApplication of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis
With the aim of portfolio optimization and management, this article utilizes the Clayton-copula along with copula theory measures. Portfolio-Optimization is one of the activities in investment funds. Thus, it is essential to select an appropriate optimization method. In modern financial analyses, there is growing evidence indicating the distribution of proceeds of financial properties is not cu...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملPrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 53 شماره
صفحات -
تاریخ انتشار 2005